TSFreshFeatureExtractor#
- class TSFreshFeatureExtractor(default_fc_parameters: dict | None = None, fill_na_value: float = -100, n_jobs: int = 1, **kwargs)[source]#
Bases:
BaseTimeSeriesFeatureExtractor
Class to hold tsfresh features extraction from tsfresh.
Notes
tsfresh should be installed separately using pip install tsfresh.
Init TSFreshFeatureExtractor with given parameters.
- Parameters:
default_fc_parameters (dict | None) – Dict with names of features. .. Examples: blue-yonder/tsfresh
fill_na_value (float) – Value to fill the NaNs in the resulting dataframe.
n_jobs (int) – The number of processes to use for parallelization.
Methods
dump
(path, *args, **kwargs)Save the object.
fit
(x[, y])Fit the feature extractor.
fit_transform
(x[, y])Fit the feature extractor and extract features from the input data.
load
(path, *args, **kwargs)Load the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(x)Extract tsfresh features from the input data.
Attributes
This class stores its
__init__
parameters as attributes.- fit(x: List[ndarray], y: ndarray | None = None) TSFreshFeatureExtractor [source]#
Fit the feature extractor.
- Parameters:
- Return type:
- fit_transform(x: List[ndarray], y: ndarray | None = None) ndarray [source]#
Fit the feature extractor and extract features from the input data.
- set_params(**params: dict) Self [source]#
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters:
**params (dict) – Estimator parameters
- Returns:
New instance with changed parameters
- Return type:
Self
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )